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The nature of the flow induced in a layer by thermal inhomogeneity of one of the boundaries is 

determined on the basis of a numerical solution of the complete Navier-Stokes equations. It 

is found that stable stratification effectively suppresses the generated flow. 

We wish to consider viscous incompressible fluid flow in the Houssinesq approximation. The motion 

takes place in a fiat horizontal layer, the lower boundary of which comprises a solid surface. The temper- 

ature of this surface is T I everywhere except for one section that has a temperature T 2. The upper boundary 

of the layer is a free surface, which is fixed in space and on which a temperature T 3 is specified everywhere. 

In the Boussinesq approximation (conventional notation) the flow is described by the system of equations 
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A p e r i o d i c i t y  cond i t i on  is  g iven  on the  s i de  b o u n d a r i e s  of the  l a y e r .  We i n t r o d u c e  d i m e n s i o n l e s s  v a r i a b l e s  
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The s y s t e m  of equa t ions  t a k e s  the  f o r m  (we d r o p  the  o v e r b a r  f r o m  d i m e n s i o n l e s s  quan t i t i e s  f r o m  now on) 
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Fig. i. Streamlines and velocity profiles, a) T = 0; b) T = 10; 

i) streamlines; 2) velocity u; 3) velocity v. 
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with the boundary conditions 

t~' ~ 0, V = 0, ~ = 0 for tj = 0, IX[ > a/h, 

u = 0 ,  v = 0 ,  ~ = 1  for t y = 0 ,  [ x J ~ a / h ,  

Ou 
- -  = 0 ,  v = 0 ,  ~ = 7  for y =  t. 
0y 

H e r e  G r  = g f l ( T 2 - T l ) h 3 / u  2 i s  the G r a s h o f  n u m b e r ,  P r  = p / k  is t he  P r a n d t l  n u m b e r ,  and Y = ( T 3 - T 1 ) / ( T 2 - T 1 ) .  

In t h i s  a r t i c l e  we  g i v e  r e s u l t s  o b t a i n e d  by the  r e l a x a t i o n  m e t h o d  f o r  the  c a s e  of  s t e a d y  f low.  
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We take the Prandtl number equal to unity. The boundary conditions for the stream function and the vortieity 

have the form ~ = 0 at y- 0 and ~b - 0, ~0 = 0 at y=l. An additional condition for the vorticityat the solid 

botmdary is formulated in the finite-difference solution of the equations [i]. 

We seek a solution of the system (3) by the finite-difference method according to an "explicit-implicit" 

scheme; the procedure is similar to that used in [2, 3]. Accordingly, the finite-difference solution of the first 

and third equations of the system (3) is determined by an explicit scheme, and in each step the difference ana- 

log of the second equation of the system (3) is solved by the Seidel iterative procedure. The size of the time 

step At is constrained by the stabflitycondition for the explicit scheme; if the stability condition is violated, 

then the number of iterations required in order to find the values of the stream function at the nodes of the com- 

puting grid (within specified error limits) increases. This fact provides a basis for automatic selection of the 

step At, which is increased as the number of iterations is decreased and vice versa. 

Below, we give the results obtained for various relations between the temperatures T I, T2, and T 3. 

If T 3 = T I (7 = 0), the flow process has the form shown in Fig. la; it intensifies as the Grashof number 
is increased. We assume here that T2 > TI. If T2 < TI, then the direction of flow is reversed in the closed 

streamlines. 
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Fig. 2. Maximum value of the 
stream function versus the num- 

ber 7. 

With an increase in the number 7 the flow diminishes, the center of circulation shifting toward the lower 
boundary. The velocity of the fluid at the surface decreases in this case (Fig. ib). We note that the diminu- 

tion of the flow intensity occurs very abruptly near the value ? = i. Figure 2 shows the variation of ]r 
which characterizes the flow intensity in the vortex, as the number 7 is increased. It is seen that the flow in- 
tensity undergoes an abrupt increase as 7 is decreased (for small values of this number). 

In the calculations leading up to the results shown in Figs. 1 and 2 the period was taken to be one fourth 
the height of the layer (for a/h = 0.4). The flow pattern is not altered by increasing the period. Decreasing 
a/h for a fixed Grashof number diminishes the flow, but does not change it qualitatively. 

The calculations have been carried out with a partition of the interval of integration into i0 and 20 seg- 
ments along the y axis and into 20 and 40 segments along the x axis. The results agree within 3-5% error 

limits. 

Thus, by a numerical solution of the complete Navier-Stokes equations in the Boussinesq approximation 
we have succeeded in determining the influence of stable stratification on the motion induced in a flat layer by 
a temperature inhomogeneity of the lower boundary. We have confirmed the occurrence of an abrupt decrease 
in the flow velocities as the stratification is enhanced. The generation of an intensely circulating flow in a 
stratified fluid layer as a result of an elevation of the temperature of part of the lower boundary requires that 
this temperature attain a value close to the temperature of the upper surface. 

NOTATION 

t, time; h, height of the layer; a, length of the section of the lower boundary with temperature T2; x, y, 
Cartesian coordinates; Vx, Vy, velocity components; p, pressure; T, temperature; ~, kinematic viscosity; p, 
density; k, thermal conductivity; ~, coefficient of cubical expansion; g, acceleration of gravity; TI, T2, T3, 
temperatures of different parts of the boundaries; u, v, dimensionless velocity components; P, dimensionless 

pressure; d, dimensionless temperature; 7 = (T3- TI)/(T2- Ti). 
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